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1. Hexagonal Notations 
 

In Hexagonal System are used two notations: 

 1.1. Miller  Notation  (3 Axis Notation) 
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Plane in Miller Notation: {hkl} 

Direction in Miller Notation <uvw> 

If the direction <uvw> lies in the plane {hkl}, then:  

                hu + kv + lw = 0  (Weiss Zone Law – true in all crystal systems) 

In hexagonal system <uvw> direction in Miller Notation is not perpendicular to 

{uvw}plane as in cubic system. 

For example: the {100} plane is perpendicular to direction <210> (not <100> as in 

cubic system). 

 

  1.2. Miller-Bravais Notation (4 Axis Notation) 
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     Plane in Miller-Bravais Notation: {HKTL} 

     Direction in Miller-Bravais Notation <UVTW> 

     T=-(H+K)  (redundant information) 

     <UVTW> direction in Miller-Bravais Notation is perpendicular to {UVTW} plane 

     (similar as in Miller Notation  in cubic system). 
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2. Relations between Hexagonal Notations 
 

Between Miller-Bravais indices and Miller indices are simple relations: 

 

2.1. Calculation of Miller indices from Miller-Bravais indices 

Direction <UVTW> to <uvw>: 

u=U-T  

v=V-T  

w=W  

for example: <2-1-10> is equal <100>;  

Plane {UVTW} to {uvw}: 

u=U 

v=V 

w=W  

for example: {2-1-10}is equal {2-10}; 
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2.2. Calculation of Miller-Bravais indices from Miller indices 

   Direction <uvw> to <UVTW>  

U=(2u-v)/3 

V=(2v-u)/3 

T=-(u+v)/3 

            W=w 

 for example: 
            <100> is equal <2-1-10>. 

              <210> is equal <10-10> 

 

 Plane {uvw} to {UVTW} : 

U=u 

V=v 

T=-(u+v) 

w=W  

for example:  

{2-10} is equal {2-1-10}; 

{10-10} ise equal {100}. 
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Example:  

Conversion of orientation in Miller-Bravais indices {HKTL}<UVTW> to Miller indices 

{hkl}<uvw>:  

Orientation {01-11}<2-1-10>  ==> {011}<100>  
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3. Hexagonal Axes Conventions for Euler Angles 
 

 User can use two hexagonal axes conventions for Euler Angles in LaboTex. The first 

convention is compatible with general LaboTex axes convention. The second convention is 

often used and it is not-compatible with general Labotex convention. 

3.1. General Labotex Convention 
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Crystal and sample coordinate systems. General LaboTex Axes and Angles Convention 

(example for righ- handed coordinate systems) 

 

 

LaboTex uses following general convention of the axes for fixing the crystal and sample 

coordinate system (see for figure above) : 

 

1. X,Y,Z axis are perpendicular to each other,  

2. [100] axis is in XZ plane, 

3. Z axis is paralel to the [001] crystallographic axis,  

4. Crystal coordinate system and sample coordinate system should be at the same 

order i.e. both right-handed or both left-handed,  

5. Bunge definition of Euler angles. 

 

where X,Y,Z  - axes of the sample coordinate system, 

           [100], [010],[001] - crystallographic axes. 

LaboTex user can adjust convention in dialog “LaboTex Options”. 

 

 

 

 

 

 



 7 

3.2. First Hexagonal Convention 

 

Sample and crystal systems position for Euler angle (0,0,0) in convention compatible with 

general LaboTex axes and angle convention are shown on the figures below: 
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3.3. Second Hexagonal Convention 

 

Sample and crystal systems position for Euler angle (0,0,0) in second hexagonal convention 

(convention non-compatible with general LaboTex axes and angle convention) are shown on 

the figures below: 
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3.4. The Choice of Hexagonal Conventions in LaboTex 

 

User can choose hexagonal convention in LaboTex using dialog ‘Hexagonal Axes 

Convention”. There is a special icon for this dialog on the main toolbar :  . 

To display the ODF in convention compatible with general LaboTex convention, select the 

left radio button. 

 

 
 

Below is shown the example of section of ODF with the marked positions of some 

orientations in this convention for hexagonal-close-packed (HCP) with an ideal c/a ≃ 1.63: 

 

(001)

[-1-10]

(001)

[-320]

0 10 20 30 40 50 60 70 80 90

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

(001)

[100]

(001)

[3-10]

(001)

[2-10]

(001)

[1-10]

(001)

[1-20]

F

f1

f =02

ODF - Section =0f2

(013)[100]

(016)[100] (016)[3-61] (016)[-1-61]

(012)[100]

(013)[6-31] (013)[1-31]

(012)[3-21] (012)[1-21] (012)[-1-63]

(013)[-3-62]

(012)[-1-21]

(016)[-3-61]

(001)[-2-10]

(021)[100] (021)[6-12] (021)[3-12]

(021)[2-12]

(021)[-124]

(010)[100] (010)[301] (010)[201] (010)[101]
(010)[001]

(011)[100] (011)[3-11]

(011)[2-11]

(011)[1-11]
(011)[-1-22]

(016)[1-61]

(011)[0-11]

(021)[1-12] (021)[0-12]

 



 10 

To display the ODF in convention non-compatible with general LaboTex convention, select 

the right radio button. 

  

    
 

 

Below is shown the example of section of ODF (the same section as in previous example) 

with the marked positions of some orientations in non-LaboTex convention for hexagonal-

close-packed (HCP) with an ideal c/a ≃ 1.63: 
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3.5. Example of ODFs for both conventions 

 

Example of ODF of sample with strong {112}<1-10> texture component in the first 

hexagonal convention (component {112}<1-10> in Euler angles (0,58,30)): 

i) ODF projection f2; 

 
 

 

ii) ODF in the 3D view 
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Example of ODF of  sample with strong {112}<1-10> texture component in the second 

hexagonal convention (component {112}<1-10> in Euler angles (0,58,0)): 

i) ODF projection f2; 

 

 
 

 

ii) ODF in the 3D view 
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3.6. Single orientation data and hexagonal conventions 

 

When you input single orientations data (file with set of orientations in Euler angles) you 

should choose convention for Euler angles in hexagonal crystal system (available from 

version 3.0.16). This choice is made in dialog „ODF Calculations from a Set of Single 

Orientations”: 

 
 

If you chose bad convention during input of data then LaboTex will show maximum in bad 

places on the ODF.  Example below shows sections of ODFs with great participation of 

component {-124}<210> for both hexagonal conventions (section of ODF in the first 

convention is shown on the figure from the left and section of ODF in the second convention 

is shown on the figure from the right). The marks (in LaboTex mode: ‘Analysis’) indicate 

proper positions of  orientation belong to{-124}<210> component (to change of hexagonal 

convention use a special icon from the main toolbar :  ). 

 

           



 14 

 

Example below shows sections of ODFs with great participation of component {-124}<210> 

which were input to LaboTex in bad convention. For both hexagonal conventions the marks 

indicate position of orientation belong to{-124}<210> component when maximum of ODF 

are moved to incorrect position (section of ODF in the first convention is shown on the figure 

from left and section of ODF in the second convention is shown on the figure from right). 

 

      . 

 

4. Relation between cell parameters and components 
 

In the hexagonal crystal system the positions of poles of orientation in the pole figures, 

inverse pole figures and in ODF are depend on cell parameters (c/a). 

For example below are shown pole figures, inverse pole figures and ODF sections for strong 

component {-124}<210>  and for c/a equal: 0.5 (left), 1.6 (central) and 10 (right): 

                                   

           

                                                         Pole Figures 
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Inverse Pole Figures 

 

 

 

 

 

 

 

 

 

 

 

 

ODF sections 

 

 
 

 

 

In hexagonal crystal system Euler angles for orientation {-124}<210> depend on cell 

parametres, hence when LaboTex shows poles for orientation given by Euler angles according 

to first pole figure i.e.{0,14,330} the others shows marks not in maxims (Euler angles for 

orientation {-124}<210> for second and third case of c/a are equal respectively {0,39,330} 

and {0,79,330}). 
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Euler angles are independent from cell parameters in case of some components, but positions 

of  poles are moved on the pole figures with change of c/a. 

Below is an example for component {100}<001> (c/a is equal: 0.5, 1.6 and 10 respectively): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When you make in LaboTex simultaneously analysis of pole figures with different c/a then 

LaboTex marks poles of component {100}<001>.in maximum intensity for all pole figures  

with different c/a (Euler angles are independent from cell parameters): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Inverse pole figures in hexagonal system 
 

The LaboTex displays complete and partial inverse pole figures. The partial pole figures 

are the unit triangles displayed in the range determined by directions  <0001> , <2-1-10> and 

<11-20>  (Miller-Bravais notation) or <001>, <100> and <110> (Miller notation). 
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Unit triangle (main area) is chosen from six symmetrically equivalent areas of full inverse 

pole figure as it is shown on the figures below for clockwise and counter clockwise axes 

systems:  
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Below you can see examples of complete (full) and partial inverse pole figures for hexagonal 

crystal system (example calculated for strong component {-124}<210>, c/a=1.6): 

  
 

In some works the unit triangle is presented in smaller region than presented above i.e. only 

30 degrees instead 60 degrees 

 

LaboTex can calculate inverse pole figures for many directions defined on the basis of sample 

coordinate. Directions <XYZ> are determined on the similar rule as crystallographic 

<UVW>, whereat units for axes X,Y and Z are the same. The most important are inverse pole 

figure calculated for directions parallel to directions of sample coordinate system (XYZ): 

- <100>  i.e. direction along Reference/Rolling Direction (RD, X axis)  

- <010> i.e. direction along Transverse  (TD, Y axis) 

- <001> i.e. direction along Normal direction (ND, Z axsis) 

LaboTex calculates these inverse pole figures during ODF calculation. User can calculate 

inverse pole figures for other directions using special dialog which is accessible from menu 

item or from main toolbar.  
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LaboTex shows (XYZ) direction in the left side of inverse pole figure (it is marked red line): 

 

                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intensity of inverse pole figure depend on numbers of crystal planes {hkl} perpendicular to 

chosen sample direction (<XYZ>). On the inverse pole figure the plane is represented by 

direction perpendicular for this plane. 

For example: from definition of {hkl}<uvw>, {hkl} is a crystallographic plane parallel with 

the plane of the rolling (or other reference plane XY), <uvw> is a crystallographic direction in 

this plane and parallel with the rolling direction. Hence in hexagonal system, if preferred 

orientation is {hkl}<uvw> then plane {hkl}should be dominating on the inverse pole figure 

which shows distribution of directions parallel to normal direction (001, ND). As it is shown 

on the figure below,  in the case of orientation {001}<100>  the maximum of the plane {001} 

should observe (basal plane is marked by yellow color) . 
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                                           Orientation {001}<100> 
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Below, you can see this maximum on the inverse pole figure which were calculated for model 

which have 100% volume fraction of {001}<100> component and FWHM equal 10 degrees: 

 
 

Pole figures (001), (100) and (110) for orientation {001}<100> show position of basal planes 

{0001}, first order prism planes {10-10} and second order prism planes {2-1-10}: 
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In case of inverse pole figures for RD and TD directions (XYZ=<100> and XYZ=<010>) we 

can observe the different positions of maximum for orientation {001}<100>. The plane 

perpendicular to X axis is {2-1-10}: 

 

 

 

 

 

hence the  maximum intensity is observed for direction equal [100] as also on symmetrically 

equivalent direction [110]: 
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Below you can see that when you choose Y (i.e.  (010) or TD) direction for inverse pole 

figure then the planes type {010}(the plane (010) is marked on the red in the figure)  is 

perpendicular to this direction for orientation {001}<100>. 
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The perpendicular direction <120> will represent this plane on the inverse pole figure. 

Because direction <120> doesn’t belong to the unit triangle (main, fundamental area) the 

equivalent direction <210> from unit triangle is choosen: 
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Below you can see the inverse pole figure for TD direction with maximum for direction 

<210> (<10-10>) determined by the  planes: {100} or {10-10}. 

                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In case of orientation {0-10}<100> which is shown on the figure below 
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the basal planes are perpendicular to TD (Y) direction hence in this case the inverse pole 

figure calculated for this direction shows maximum for <001> direction:  

 

                                     
                                  Inverse pole figure calculated for direction TD 

                       (Model of  component {0-10}<100>, FWHM 10 degrees) 

 

 

Below you can see the pole figures {100} and {001} calculated for model model of  

component {0-10}<100> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please remember that orientation noted by Miller indices when is expressed by Euler 

angles has different notation for each hexagonal axes convention.  

For example orientation  {0-10}<100> is equivalent orientation {0,90,0} in the first 

convention and {0,90,30} in the second hexagonal axes convention. Pole figures and inverse 

pole figures are the same for orientation {0-10}<100> in both convention. Orientation 

{0,90,0) in the first convention is different from orientation {0,90,0) in the second convention 

hence orientation expressed by Miller indices, pole figures and inverse pole figures are 

different in the both conventions. 
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6. Anisotropy Factors & Kearns Factors 
 

Anisotropy is very important parameter which described properties of hexagonal materials. 

LaboTex calculates two kinds of texture factors which are used to characterize the hexagonal 

materials. The anisotropy factors and Kearns factors have found use for correlations and 

materials characterization of hexagonal materials (thermal expansion, irradiation growth, 

elastic properties in zirconium and titanium alloys, etc.). LaboTex calculates anisotropy 

texture factors also for Orthorhombic and Tetragonal Crystal Systems.  

 

Analysis of texture based on partial (incomplete) pole figures or on the Theta-2Theta scans 

may lead to errors in estimation of anisotropy factors hence LaboTex calculates anisotropy 

texture factors from ODF (orientation Distribution Function). The ODF contains complete 

information about texture of sample. Very important is that LaboTex can calculate ODF using 

incomplete data (partial pole figures) from only one technique:  

 X-Ray reflection (partial pole figures) 

 X-Ray transmission (partial pole figures) 

 Neutron diffraction (partial pole figures) 

 EBSD 

 

The first kind of anisotropy factors inform us about fractions of basal pole [0002]  in each 

from three principal directions :  

 X (Rolling Direction  or  Axial Direction),  

 Y (Transverse Direction or Circumferential Direction)  

 Z (Normal Direction or  Radial Direction).  

 

Perfect alignment of the basal poles in one direction gives an ‘f’ value of  ‘1’ in that direction 

and ‘0’ in second and third directions. The sum of  anisotropy  factors in the three direction is 

equal 1.0: 

                                                      0.1321 = NDTDRD fff    

 

For sample with none crystallographic texture (texture “free” sample) all factors are equal 1/3.  

 

There are also the anisotropy factors, ‘f’ factors, defined by Kearns (Kearns factors (JJ 

Kearns, “Thermal expansion and preferred orientation in Zircaloy”, Bettis Atomic Power 

Laboratory, Report WAPD-TM-473,1965 and JJ Kearns, CR Woods, J. Bucl. Mater. 20 

(1966) 241). If we make assumption that for single hexagonal crystal contribution to the bulk 

property (P) depends on the angle between reference direction and the [0001] crystal direction 

(Kearns on the basis of ,,Anisotropy of Metals”, W.Boas and J.K.Mackenzie, 1950) as  

following:  

)cos1(cos 2

]0001[

2

]0001[.  = PPPref  

 

where Pref. is the property in the reference direction, 
]0001[P  and 

]0001[P are the single crystal 

values parallel and perpendicular to [0001], and is the angle between the reference direction 

and [0001], then for polycrystalline hexagonal materials : 
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



dIf = 
2

0

2cos)sin()(  

)1(]0001[]0001[. fPfPPref = 
 

where  f is orientation parameter – Kearns factor. 

 

The Kearns factors can be defined for principal directions:  

ra

RD

L fFLff === 1
  (Axial or Rolling or Longitudinal Direction) 

rc

TD

T fFTff === 2
  (Circumferential or Transverse Direction) 

r

ND

N fFNff === 3
 (Radial or Normal Direction )  

The sum of  Kearns factors in the three direction is also equal 1.0: 

 

0.1= NTL fff  

 

as also the “f” factors for  texture “free” sample are equal 1/3, similar as earlier defined 

anisotropy factors. The Kearns factors can be determined from Theta-2Theta scan (Kearns 

method) which should be made for each principal plate direction or for longitudinal and 

transverse directions in case of rod and similar materials. We can calculate these factors with 

greater accuracy using ODF which can be determined on the basis of the pole figures 

measured with only one principal direction. The Kearns method use several interpolations  

hence it is difficult to indicate whether the results of calculation are good or poor (see for 

example to the paper ,,Generalized Kearns texture factors and orientation texture 

measurement" by Gruber et. all in the Journal of Nuclear Materials,  Volume: 408, (2011), 

pp. 176-182). Please see on the figure below (comparison of ODF and Kearns methods), 

where dependence I(φ) (red line) is interpolated from experimental points determined on the 

basis of peaks from 18 (hkil) planes (black points and black lines). 
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The radial Kearn’s texture parameter (fr) is usually greater than 0.5 for Zircaloy nuclear fuel 

clad tubing. (See also: Van Swam, L. F. P. et al; "Relationship Between Contractible Strain 

Ratio R and Texture in Zirconium Alloy Tubing"; Metallurgical Transactions A, Volume 10A, 

pages 483-487. (1979)).  

 

Calculation of Anisotropy Factors 

 

 

You can start dialog ‘Calculation of Anisotropy Factors’ from menu ‘Calculation’. 

 

 

                                             
 

 

 

When you click on the button ‘Calculate’ LaboTex shows results of calculation for the 

current Sample and Job. The calculation are made on the basis of ODF. 
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LaboTex displays: 

 Anisotropy factors – f1, f2, f3 – fractions of Basal Planes (001) in Sample Directions (on 

the basis of angles between normal to Basal Plane (resultant) and Sample Directions; 

 Angles between normal to Basal Plane (resultant) and Sample Directions; 

 Kearns Factors (fL,fT, fN) – fraction in physical property 

 normalized texture index (“0” – random, “1” monocrystal)  

 

 

 

Example 1:  
 

We can build the model texture which contains 100% of texture component 

(Phi1=0,Phi=22.5,Phi2=0) (i.e. the angle between [0002] direction and ND direction is equal 

22.5 degrees),  
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Because model of ODF was created for triclinic sample symmetry hence complete pole figure 

(0002) shows only one maximum: 
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The results of Kearns factors calculation are the following: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The texture index equal 1.0 indicates that our texture correspond to pure monocrystal. The 

angles between direction [0002] of this monocrystal (“resultant” monocrystal) and direction 

ND is equal 22.5 degrees when for TD direction is equal 67.5 degrees. Hence anisotropy 

factors f1,f2,f3 are close to 0.0, 0.25 and 0.75: 

 for ND direction: ((90.0-22.5)/[(90-22.5)+(90-67.5)+(90.0-90.0)]=0.75 

 for TD direction: (90.0-67.5)/ [(90-22.5)+(90-67.5)+(90.0-90.0)]=0.25 

 for LD direction: (90.0-90.0)/ [(90-22.5)+(90-67.5)+(90.0-90.0)]=0.0 

 

In case of Kearns factors, the fractions in physical property are the following: 

 for ND direction:  the angle ND/[0002] is equal 75 degrees hence fN =  cos2(22.5o)=0.853 

 for TD direction:  the angle TD/[0002] is equal 67.5 degrees hence fT= cos2(67.5o)=0.147 

 for LD direction: the angle LD/[0002] is equal 90.0 degrees hence fL= cos2(90.0o)=0.0 
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Example 2:  
We can build the model of ODF which contains:  

 20% planes with [0002] in ND direction,  

 30% planes with [0002] in TD direction and  

 50% planes with [0002] in RD/LD direction  

using dialog “Model ODF”:  

 

 
 

 

The pole figure for (0002) /basal plane/ calculated on the basis of the model ODF is 

following:  
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The results of Kearns factors calculation are compatible with assumptions of model:  

 

 
 

 

Warning: 

The Kearns factors (fL,fT, fN) are preferred for calculation of physical properties of 

sample in their principal directions on the base of data for monocrystal.  

 

 

Example 3:  

 

We have a hexagonal material which has 

]0001[P  = 3 a.u.  

]0001[P = 1 a.u. 

 

where  a.u. - arbitrary units and P - arbitrary property. 
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We calculated ODF on the basis of pole figures for ND direction of sample and we have 

calculated anisotropy factors. We received for example following data:  

  

 
 

 

)1(]0001[]0001[. fPfPPref = 
 

)5.01(5.0 ]0001[]0001[ = PPPND
 

..0.2)5.01(0.15.00.3 uaPND ==  

)25.01(25.0 ]0001[]0001[/ = PPP LDTD
 

..5.1)25.01(0.125.00.3/ uaP LDTD ==  

 

The property P in direction ND is equal 2.0a.u. when in direction TD and LD is equal 1.5a.u. 

 

User can find the maximal value of the property for calculation of Kearns factors for 

transformed ODF for other positions of sample frames (by changes of Phi1 and Phi angles). 

The calculation on the base of the resultant monocrystal (as in example 1) give good results 

only in some cases. 
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Example 4: 

 

Pole figure (0002) (intensity of basal plane) for initial position of sample frame. 

 
 

The calculation of anisotropy factors for initial sample frame are the following: 
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The calculation of ODF for new sample frame position, rotation about (Phi1=0; 

Phi=90;Phi2=0 i.e. rotation about 90 degrees around RD axis: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pole figure (002) after sample frame change (ND<->TD): 
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The Kearns factor for LD (fL) is the same in both case (the rotation was around this axis). The 

factor for TD (fT) is now equal factor for factor fN in the initial frame and factor for ND (fN) is 

now equal fT in the initial frame. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Warning: 

We can calculate Kearns factors for any position of sample frame by change of the initial 

sample frame in dialog “ODF Tranformation”. If you have the experimental results (pole 

figures) for only one sample frame position you can calculate anisotropy factors for any other 

positions of sample frame. The above is true if texture in your sample is homogeneous (none 

or small changes with depth).  


